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Parameter and Structure—Activity Data
Bases: Management for Maximum Utility

by Albert Leo

Quantitative structive-activity relationships (QSAR) in the fields of medicinal chemistry, pesticide sci-
ence, biochemistry and toxicology are being published at an ever increasing rate. In addition to these
biological correlation equations, thousands of such equations have been published for all kinds of organic
reactions. There is a great need to develop a computerized system to enable one to make comparisons and
to draw generalizations about the effects of structure on chemical and biological activity. A proposal is
made for a systematic approach to this problem based on the physicochemical properties of organic

compounds.

Introduction

The general field of structure-activity relationships
is currently suffering from an embarassing excess of
“riches.” In each of the major areas—pharmacokinetics,
drug and pesticide design, and environmental hazard
assessment—there is a massive outpouring of results,
each interesting in its own right. But taken as a mighty
flood, it prevents most investigators from reaching that
magic “overview” point from which general principles
can be discerned and formulated. The revolution in com-
puters and in instrumentation has resulted in a nonlin-
ear increase in output of each laboratory, and the number
of laboratories is likewise increasing at some power
function greater than one. Thus an incredible number
of organic compounds, from the simple to the very com-
plex, are being reacted with a huge variety of biological
systems in every level of complexity from purified en-
zymes to whole animals or even ecosystems. The re-
sulting publications inundate the researcher even if he
is dedicated to keep abreast of the field.

Objectives

In structure—activity studies, the term “pattern rec-
ognition” is most often applied in a rather narrow sense
to a certain mathematical treatment of a set of biological
data. Of course it can be given a more fundamental
“philosophical” definition where the patterns sought are
far broader in extent—crossing the boundaries between
scientific disciplines at times. It is “pattern recognition”
in this more basic sense which can be expedited by a
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properly constructed bank of biological activities inter-
faced with a data base of suitable physicochemical pa-
rameters. Even though the early format of the data base
maintained by the Pomona College Medicinal Chemistry
Project needs a great deal of improvement, it still has
been used to show a pattern of activity extending across
disciplinary boundaries in physical chemistry, biochem-
istry, and animal and plant physiology. In these times,
when organization within subspecialties leaves much to
be desired, and integration between specialties is all too
rare, any tool for organizing this kind of knowledge
deserves close attention.

From the few examples given in the following section
we hope to illustrate how the present structure of the
data bases helped in the discernment of discipline-span-
ning patterns of activity and how this now leads us to
propose improvements.

Nonspecific Hydrophobic
Interactions

When silinized glass beads are placed in water they
tend to aggregate, driven by the force which tends to
minimize the hydrophilic/hydrophobic interface. This is
the simplest sort of physicochemical model of biological
membranes. Addition of alcohols to this system reduces
the hydrophobic/hydrophilic difference and tends to dis-
aggregate the beads according to the following rela-
tionship (1).

log 1/C = 0.98 log P — 0.80 1)
with



276 A.LEO

where C = concentration of aleohol (in mole/L); n is the
number of data points; s and r are the standard error
and coefficient of regression, respectively, and P is the
partition coefficient of the solute between octanol and
water.

The membrane surrounding a red blood cell is much
more complex than the silinized bead model above, yet
the action of alcohols in rupturing this very important
membrane can be expressed (2) in similar fashion:

log 1/C = 0.96 log P — 0.30 )
with
n =6
s = 0.06
r = 0.999

From this we see that the real biological membrane
displays the same relative sensitivity to changes in hy-
drophobicity as does the model (same coefficient of the
log P term) but its intrinsic sensitivity is greater. The
latter characteristic is immediately evident if one elim-
inates the hydrophobic effect in both equations by let-
ting log P = 0. The activity is then given directly by
the intercept.

The resistance to an electrical impulse across the
membrane in a nerve cell is of critical importance in
transmission of nerve impulses. This resistance is af-
fected by the presence of alcohols, and has been studied
using synthetic “black lipid” membranes as models. In
one such study (7) the data could be fit to the following
equation:

log 1/C = 1.16 log P — 0.51 3)
with
n="1
= 0.26
r = 0.985

The effect of a series of miscellaneous neutral organic
compounds on the blockage of a frog’s nerve (1) is given
by:

log 1/C = 0.88 log P + 0.63 4)
with
n = 25
s = 0.297
r = 0.955

Here again the real membrane of a nerve cell is intrin-
sically more susceptible to becoming depolarized (in-
tercept + .63 vs. - 0.51), but its sensitivity to structural
changes in the depolarizing agent is very similar to a
physicochemical model (log P coefficient = 0.88 vs. 1.16).

Moving up the scale in complexity and crossing into
the field of animal physiology, one can rationalize the
narcotic action of alcohols on tadpoles (1).

log 1/C = 0.90 log P — 0.91 %)

Again the hydrophobic effect, as modeled by octanol/
water log P, can be seen as a common thread linking
what may be various actions at membrane surfaces.

The significance of these relationships becomes more
apparent when useful analgetics, anesthetics and nar-
cotics are also fit into these equations. Even when a
particular functional group imparts an unusually high
level of activity and thus deserves the label of “phar-
macophore,” its analogs usually fit closely to an equation
with a unit slope in log P but with a larger intercept.

In discussing the interaction of a wide variety of
chemicals with biological systems, the importance of the
use of generalized descriptors can hardly be overem-
phasized. This point can be illustrated by a study of
penicillins (3).

log 1/C = —0.45m + 5.67 6)
with
= 20
s = 0.191
r = 0.909

where C is the concentration needed to cure mice of a
S. aureus infection and m is a measure of substituent
hydrophobicity (4) using the octanol/water model. The
negative coefficient for the = term was unexpected, and
it inspired a study to see if hydrophobicity could pro-
mote binding to a site of loss to a greater extent than
it promoted bacterial toxicity. This study (5) produced
the following equation:

log (B/F) = 0.50m — 0.67 ()
with
n="179
s = 0.255
r = 0.924

where B/F represents the ratio of penicillin bound to
human serum albumin to that in the free state.

Penicillins are not unique in binding thus to serum
albumin, as was shown by the study of a set of miscel-
laneous neutral organic solutes from which Eq. (8) was
derived (6):

log 1/C = 0.75 log P + 2.30 ®
with
n = 42
s = 0.16
r = 0.960

Binding to hemoglobin can also reduce the effective con-
centration reaching the target (7). This is shown in Eq.
9):

The use of a direct measurement of activity as the dependent var-
iable, instead of the concentration needed to reach a pre-set activity
level, limits the usefulness of this equation, as will be discussed in
detail in later sections. Direct comparisons of slopes and intercepts
cannot be made unless the dependent variable is in the same form,
usually log 1/C.
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log 1/C = 0.71 log P + 1.51 9
with
n =17
s = 0.16
r=0.95

In Eq. (8) and (9), C refers to the molar concentration
of ligand required for 1:1 binding of the solute to the
bovine protein. It is evident that albumin has about 6.2
times the affinity of hemoglobin (antilog of 2.3-1.51),
but the greater amount of the latter present in the
bloodstream results in an important role for both pro-
teins in determining how chemicals are distributed in
animal bodies.

A broad spectrum of toxicity measurements appear
to be nonspecific in nature and related simply to solute
hydrophobicity. For a wide variety of alcohols (1) we
have Eqgs. (10)-(14).

50% Inhibition of bacterial luminescence

log 1/C = 1.10 log P + 0.21 (10)
with
n =28
s = 0.103
r = 0.998
50% Inhibition of tortoise heart
log 1/C = 0.98 log P + 0.52 1)
with
n =10
s = 0.124
r = 0.973

50% Inhibition of oxygen consumption by guinea pig
lung

log 1/C = 0.84 log P + 0.16 (12)
with
n="
s = 0.114
r = 0.994
Toxity of vapor to tomato plants
log 1/C = 0.68 log P + 3.04 (13)
with
n =14
s = 0.101
r = 0.972

Inhibition of liver esterase

log 1/C = 0.751log P + 3.70 (14)
with
n =14
s = 0.322
r = 0.931

The same sort of relationship often holds when the
toxic reaction of alcohols is carried to lethality:
LD-,q, for cats (1):

log 1/C = 1.06 log P + 1.37 (15)
with
n =8
s = 0.124
r = 0.986

Sometimes outliers to a general relationship of this
type give indication that a metabolite may contain a
toxiphore not present in its precursor. It is interesting
therefore to note that methanol is not an outlier in Eq.
(15); i.e., the metabolite formaldehyde, which causes
blindness, does not displace the failure of the autono-
mous nervous system as immediate cause of death in
the time frame of the LD ,,, test.

Even this simple pattern of hydrophobically depen-
dent action has had important repercussions when its
application to new areas was discovered. A number of
elegant experiments have solidified the relationship be-
tween aquatic bioaccumulation and log P (o/w). The fol-
lowing relationship, which applies to chlorinated
hydrocarbon pesticides in the waters of the Great Lakes,
was taken from one such study (8):

log BCF = 0.791 log P — 0.40 (16)
with
n = 122
r = 0.927

Here BCF is the ratio of concentration of pesticide found
in fish to the concentration in the waters in which they
live. It is remarkable because it covers a 100,000-fold
activity range and included 13 species studied in several
laboratories. The usefulness of this expression to any-
one responsible for the hazard assessment of untested
compounds or yet-to-be synthesized structures hardly
needs emphasizing, especially in view of improved
methods of calculating log P (o/w) from structure (see
later section).

One should no longer be surprised when relationships
are discovered in the more esoteric specialties. In the
field of forensic medicine, a relationship has been found
between log P and the post-mortem concentration of
barbiturates in human blood in cases of fatal poisoning

9):

log 1/C = 0.44 log P + 2.92 (17)
with
=5
r = 0.943

The fact that the coefficient of the log P term is close
to that found for barbiturate efficacy in mice is reas-
suring, but one still wonders why it is only half that for
many other narcotics.

Early in their training, scientists learn the principal
of Occam’s razor, yet there is an understandable ten-
dency for an investigator to consider the system he
chooses to work on to be unique, and consequently he
is very apt to concentrate on unique solutions to the
problems it presents. As an example, someone working
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on the inhibition of the enzyme, hydroxyindole-O-meth-
yltransferase, by N-acyltryptamines might be excused
for believing this reaction to be much more complex
than any of those related in Eqs. (1)-(15). However,
the equation for 50% inhibition of this enzyme can be
expressed (10) as:

log 1/C = 0.71log P + 1.51 (18)
with
n =17
s = 0.16
r = 0.950

This is so similar to the expression for binding to hemo-
globin [Eq. (9)] or to a nonenzymic protein, serum al-
bumin [Eq. (8)], that evidence for any uniqueness in the
binding interaction must be found in other data.

A further example can be found in the 75% inhibition
of influenza B virus by benzimidazoles for which the
following expression holds (10):

log 1/C = 0.58 log P + 1.58 (19)
with
n =15
s = 0.210
r = 0.903

Again the nonspecific binding of solute to protein ex-
plains so much of the variance in this activity that noth-
ing special about the structure of the viral protein is
indicated by this data.

Specific Hydrophobic Interactions

If a biological effect does not involve a transport fac-
tor, or occasionally, if transport can be factored sepa-
rately, then often there remains a hydrophobic effect
limited to portions of the reactant structure. This is
ascribed to a desolvation of only part of the substrate
surface as it is bound to the active site in a specific
orientation while the remainder is still exposed to sol-
vent space. The biological activity bank contains many
examples of enzyme inhibition where the overall log P
of the inhibitor does not help the correlation but the =
value of substituents in just one of the positions is clearly
significant. One such example comes from a study of S-
methylation of thiopurine by thiopurine methyltrans-
ferase (11). In a set of benzoic acids substituted at two
or more of the 3, 4, and 5 positions, which acted as
enzyme inhibitors, only = for the 3 position was signif-
icant. If both the 3 and 5 positions were substituted,
then the substrate appeared to be oriented so that the
more hydrophobic side contacted the enzyme and the =
value of the other side did not matter. This single spe-
cific hydrophobic parameter accounted for only half of
the variance in the data [Eq. (20)] but addition of an
electronic term, which was not position restricted, re-
sulted in considerable improvement [Eq. (21)].

pI* = 1.54 7 + 4.04 (20)
with
n =12
s = 0.724
r = 0.746
pI* = 1.25 n* + 2.23¢ + 4.04 (21)
with
= 12
s = 0.457
r = 0.92

In both the above equations, pI® is the negative log of
the concentration causing 50% inhibition. Further ex-
amples of the importance of electronic terms are given
in the following section.

Electronic Effects

Even when the hydrophobic parameter plays an im-
portant role in toxicity there are many instances where
an electronic parameter is needed to explain the activity
of certain functional groups. The in vitro inhibition of
the purified enzyme, alcohol dehydrogenase, by 4-sub-
stituted pyrazoles produced data (12) fitting this
equation:

logK; = 1.22log P — 1.80 0, + 4.87  (22)

with

n =14

s = 0.32
r = 0.985

where K is the inhibition constant. The Hammett sigma
meta constant (13) is the obvious choice for the 4 position
on a pyrazole ring, because it is meta to each of the two
ring nitrogens.

The negative sign of the coefficient for the electronic
parameter says that electron withdrawal from the ring
decreases the binding strength. Substitution of pyra-
zoles with hydrophobic groups increases their binding
to this enzyme, as indicated by the large positive coef-
ficient of the log P parameter. This enzyme probably
has limited hydrophobic binding space, and increasing
solute log P past a certain point would not increase
inhibition, but this point was not reached with the set
studied.

When the same inhibitory action of the pyrazoles is
studied in isolated liver cells, however, the processes
of transport through the cell wall and absorption to
plasma proteins can be expected to place an upper op-
timum on their hydrophobic nature. In Eq. (23) which
correlates the whole cell data, a negative coefficient with
the term (log P)2, results (12) in a parabolic relationship
which fits the data rather well:

log /K; = 1.27 log P — 0.20(log P)* - 1.80 ,, + 4.75

with (23)
n =14
s = 0.320

r = 0.971
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Isolated liver cells carry out the dehydrogenation re-
action with about the same efficiency as does the intact
liver, and so it is gratifying to see that, in comparing
in vitro and in vivo reactions, the electronic effect and
the intrinsic activities remain essentially the same. The
only additional term needed to correlate the in vivo
results is one allowing for optimized transport to the
active site.

Special Hammett sigma parameters apply to struc-
tures which allow the electronic effect to operate on a
“through resonance” basis (14). In biological reactions,
just as in ordinary solution chemistry, this parameter,
called sigma minus, proves to be more effective when-
ever the reactant structure is appropriate for its use.
For example, the ring-attached ester oxygen engages
in “through resonance” in phenyl phosphates. When
these compounds act as inhibitors of acetylcholinester-
ase, in vitro, Eq. (24) can be derived (15) for the 50%
inhibition level:

log 1/C = 2.37(c’) + 4.38 (24)
with
n =
s = 0.297
r = 0.985

For in vivo insecticidal activity, as is seen in the LDj5,
data of phenyl diethyl phosphates acting against house-
flies (15), a hydrophobic term as well as an electronic
term is justified:

log 1/C = 2.65(c") + 0.36 log P + 2.44  (25)
with

n =28
s = 0.206
r = 0.990

In this set, none of the solutes approached the optimal
hydrophobicity, and so a (log P)? term or a bilinear
equation was not justified.
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Steric Effects

If the Hammett-Taft parameters with “extra-ther-
modynamic methodology” (16) is actually appropriate to
detect patterns in reactions which extend across the
boundaries of physical organic chemistry into biochem-
istry and animal and plant physiology, then one would
expect to see some of the latter reactions to be depen-
dent on the steric parameter E, (1?7). An interesting
example of such a reaction is a transesterification with
and without the enzyme, chymotrypsin [Egs. (26),(27)].
For the ester exchange [Eq. 26)], the data could be fit
(18) into Eq. (18):

logk = 1.67E, — 1.13 (28)

As the group R gets bulkier, its E, value becomes
more negative. Therefore, steric bulk hinders ester ex-
change as would be expected. What might not be ex-
pected, but which gives gratifying support to the use
of Hammett-Taft parameters in biological QSAR, is
based on data from hydrolysis of p-nitrophenyl esters
by chymotrypsin (18):

log ko/k,, = 1.76 E, + 0.797 + 2.23 (29)

with
n=2_8

s = 0.201
r = 0.981

The acylation step [Eq. (27)], which involves formation
of a tetrahedral intermediate between substrate and the
serine group of the enzyme, corresponds to the inter-
mediate in the uncatalyzed reaction. The coefficient of
the E, term in Eq. (29) indicates that the reaction con-
stant k, for this step, is also reduced by bulkiness of
the R group to the same degree as in the in vitro re-
action [Eq. (28)]. On the other hand, enzyme-binding,
which favors the reaction, is enhanced by increased
hydrophobicity.

Summary

This very brief overview of some patterns thus far
recognized in biological QSAR at various levels of bio-
complexity gives an idea of the types of information that
we believe must be stored in a data base if it is to
accomplish its purpose: expediting the discovery of more
interesting patterns in the future. The Hammett-Taft
parameters, which have proved so useful in solution
chemistry, certainly must be made readily accessible,
but automatic loading of preselected values should be
optional. To refine the calculations from physicochem-
ical data, which often is an order of magnitude more
precise than that from biological systems, many modi-
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fications of these parameters have been reported and
discussed in the literature—so many in fact, that new-
comers to the field may balk at the task of learning how
to apply them all correctly. Some success has been made
in the attempt to factor all of these electronic param-
eters into just two effects: field and resonance (19). Of
course, it takes more data points to justify the two
separate parameters where one sigma parameter served
originally, but the further data gathering may be worth
the effort if the separation of effects adds to overall
understanding.

Currently it appears that there is so much “noise” in
biological data that only about eight of the 35 types of
electronic parameters are sufficiently different from the
others that their use is justified in biological application.
Nevertheless, there is an undisputed trend toward bet-
ter precision in physiological data and especially in bio-
chemical studies of purified enzymes. Therefore, the
effort to keep these “unusual” parameters current and
readily available in the database is justified, because at
some later date they may provide insight into some
subtle effects not discernable with techniques now in
use. We cannot stress too strongly the fact the biological
QSARs rest on a foundation of the corresponding QSARs
in physical organic chemistry. Over the last 15 years
we have carefully studied over 2200 physico-chemical
data sets before adding them to the databank of the
Pomona Medchem Project. These sets cover most of the
reactions in solution chemistry that could be found rel-
evant in biochemistry. The following sections will de-
scribe the databank as it is structured to accommodate
biological information, since that is the more complex
and poses greater problems for effective searching. It
should be kept in mind that the physicochemical data
are stored in a way that interfaces with the biological,
a feature that encourages combined searches.

Database Structure and Content

From a maintenance aspect, it makes sense to sep-
arate the overall database into two parts: parameter
information and activity information. When this work
was initiated, it was uncommon for the majority of po-
tential users to have ready access to a computer ter-
minal on which searching and computation could be
combined, and so the original design stressed effective
methods of search and retrieval of information from
hard copy (computer print or microfiche). One important
facet of such use—searching for chemical structures by
types of substructures—required the user to have at
least a limited reading capability of Wiswesser line no-
tation (WLN) (20). This could be acquired in a few hours,
but many chemists resist its use. With the current avail-
ability of computer facilities and more “user-friendly”
methods of structure searching, we have modified struc-
ture storage to take advantage of these advances, but
we still maintain WLN where it can aid the user who
by choice or of necessity searches manually. But of equal

importance, WLN provides us with a more dependable
and faster method of structure entry.

Parameter Databank

Parameters from Measured Physical Proper-
ties. Hydrophobicity is taken as the log of the partition
coefficient between a nonpolar and an aqueous phase.
Octanol is the preferred nonpolar phase, and only values
for neutral solutes in this solvent are placed in the “se-
lect” category. While it is possible to automatically load
these “select” values directly from the computer, rarely
will all the desired values be found there. It is often
more practical to use calculated log P (see below) or w
constants, which are measures of substituent hydro-
phobicity. Most of the polar substituents in the data
base have multiple entries of m constants, suffixed to
indicate whether they apply to aliphatic, vinyl, or ar-
omatic attachment, and, if the latter, if other polar groups
present have altered their values by electronic inter-
action (4,21).

Electronic parameters include as many as 35 types of
Hammett sigma constants which may be stored for any
given substituent. The only ones designated “preferred”
and available for automatic computer retrieval are: sigma
meta, sigma para, sigma inductive, sigma star, sigma
minus, and sigma plus. The orthogonalized parameters
for the field and resonance effects, F' and R (1), are
also in the latter category.

Of steric parameters, the Taft E, constant (17), de-
rived from rates of acid hydrolysis of esters, is normally
the preferred parameter, but the values containing
Hancock’s correction for hyperconjugation (22) can be
retrieved if specified and available.

Molar refractivity is calculated via the Lorenz-Lorenz
equation (14) from refractive index and density.

Parameters Calculated Directly from Struc-
ture. Log P (octanol/water) can be calculated by the
fragment method (4,23,24) manually or by computer.
The computer program, CLOGP-3, also retrieves a
measured value from the “select” list for comparison, if
one is available.t There are many advantages to using
log P for the entire molecule rather than the substituent
hydrophobic constant, 7, as was commonly used in ear-
lier work. Even when restricted to substituents on ar-
omatic rings, different w value sets must be maintained
for polar substituents depending on what other polar
groups are present. The safest procedure is to calculate
log P for all compounds including the “parent” if there
is one. If it seems advantageous to study hydrophobicity
in terms of substituent effect, then the log P of the
parent is subtracted from each.

Provision for storage and retrieval of charge densities
from molecular orbital calculations is being considered.
To date, these measures of electronic effects have not
been used as successfully in correlation analysis as the

tPart of software available through Pomona Medchem Project,
Chemistry Dept., Claremont, CA 91711.



PARAMETER AND STRUCTURE-ACTIVITY DATA BASES 281

Hammett sigma values, and their inclusion would in-
crease the size and complexity of the database manyfold.
Charton’s steric parameters v (25), calculated in part
from van der Waal’s radii, are stored for the most com-
monly encountered substituents, as are Verloop’s ster-
imol parameters (26). This is especially important in
view of the dearth of measured values for Taft E..

Molar refractivity, which reflects the overall bulki-
ness of the substituent together with a measure of Lon-
don dispersion forces (27), can be calculated on the basis
of an atom and bond additivity procedure programmed
as CMR.T When calculated for a substituent rather than
for an entire molecule, a conjugation correction may
apply when attachment is on an aromatic or vinyl carbon
atom.

In terms of the “mechanics” of parameter entry, the
first problem to be dealt with is the method of handling
chemical structures. At the outset, for solute log P val-
ues, WLN was chosen because structure entry was swift,
storage space was minimal, and readily available alpha-
numeric sorting routines produced “hard copy” which
could be efficiently searched manually. The original con-
tracted WLN format was maintained, and structural
isomerism was generally (but not always) indicated by
the prescribed suffixes. Molformula (always) and CAS
registry number (usually) accompanied each entry as
additional means of access.

The use of WLN still has enough advantages to justify
its continued use for entering molecular structure, but
we have developed computer programs to circumvent
most of its shortcoming as a searching tool. WISCT*
converts WLN to a connection table, which makes more
sophisticated searches possible. Also a new line-nota-
tion system called SMILEST has been implemented. It
is very “user-friendly,” taking perhaps ten minutes to
learn. It dependably produces a unique notation which
is more sparing of computer space than a connection
table. And a program, WISSM, which converts WLN
to SMILES completes the interconversion network.

For manual searching, files of substituent structures
are ordered on “molformula,” i.e., sum of atom types.
Of course, substituent formula is often not a unique
descriptor, and so each entry is accompanied by a type-
written structure (not standardized, but easily reada-
ble) and by the substituent WLN called SWLN. SWLN
is in many ways easier to read and write than WLN,
because the notation always begins at the attachment
bond which is designated by an asterisk (*). SLWN is
currently used for data entry and substituent searching,
but provisions are being made to allow SMILES as an
alternative.

We would like the primary parameter data base to
be structured so that it will serve the needs of the most
demanding specialist. To do so it must not only list a
multiplicity of parameter types, but in many cases, quite

tPart of software available through Pomona Medchem Project,
Chemistry Dept., Claremont, CA. 91711.

a few values for each type even for the same structure.
The justification of entering values that are nearly alike
comes from the fact that they are usually from different
secondary reaction sets, and this establishes their re-
liability to the primary set. We believe that very few
of the “outlier” values present are the result of exper-
imental error. The original reference often contains in-
formation about the reaction conditions, which could
lead one to conclude that it might constitute a closer
model to that under study.

The reference list, in addition to the usual journal
designation, contains a short description of the method
of parameter determination; e.g. “rate of solvolysis,”
“reaction rate with diphenyldiazomethane,” “F-19
NMR,” ete., which many times eliminates the need of
searching for a journal that is not readily available.

There are alternative methods of determining param-
eter reliability other than accepting the judgment of
those who assemble the data base. For instance, one
can estimate the chemical reliability of a parameter for
a given substituent of a specified type by observing the
range of reported values in various model systems. Ex-
amples of lower reliability would be found in the com-
paratively large range of sigma para values for -NH- or
-OH. Estimation of reliability in biological applications
is a little more involved. However, it is not difficult to
write a computer search of the structure-activity bank
(see below) to determine how the deviation for a spec-
ified substituent compares with the standard deviation
of the equation in which it appears and in which sigma
para (for example) is found to be a significant parameter.
One would not be surprised to find the predicted bio-
logical activity of p-NH- and p-OH more frequently at
or beyond the “outlier boundary” (two times the stan-
dard deviation) because of the lower “chemical reliabil-
ity.” We plan to provide this confidence measure as a
continually up-dated feature in the editions of the future
data base.

Structure-Activity Banks: Biological and
Physicochemical

The primary data are presently stored in the form of
one, or at most two, regression equations. The equation
stored is not arrived at by stepwise regression or a
combination of the forward and reverse stepwise pro-
cess. It is, instead, arrived at by examining all possible
combinations of the most reasonable parameters as de-
rived by a fast-permutation algorithm. The best 200 or
300 equations—out of perhaps millions possible if all
combinations of eight or ten parameters are consid-
ered—are printed in ascending order of standard de-
viation and can be quickly scanned for those making the
most sense both from a chemical and statistical
standpoint.

Currently the structure activity databases contain no
compounds whose measured activity is not part of a set
of similarly acting substances. This is a weakness which
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is being remedied as quickly as funding permits. Stry-
chnine serves as an example of the kind of important
data gap which results. Its activity as a convulsant has
become a standard against which anticonvulsants are
often measured. Yet strychnine does not appear in the
bank, because its convulsant activity has not been stud-
ied as part of a structurally related series.

In the regression equations making up the primary
data, the dependent variable is the measure of activity.
However, the preferred form for this variable is not the
activity itself, such as percent hydrolysis in a chosen
time period, but the concentration of reactant needed
to produce a chosen activity level. The concentration
should be expressed, whenever possible, as moles per
liter, or moles per kilogram of test system, which is
very similar. It is conventional to use the log of the
reciprocal concentration, so that larger values denote
higher activity. This also puts it on a free energy related
basis. Any of the sets where the dependent variable is
the log of the Michaelis constant K,, or the dissociation
constant for an enzyme-inhibitor complex K; can also be
compared for slope and intercept in this manner.

It is, of course, much simpler to measure relative
biological activity at a constant initial reactant level,
and the bank contains a number of equations of this
type, especially from the earlier literature. Some useful
qualitative comparisons can be made with them, but
they should be carefully excluded in any sweeping com-
puter search. For these reasons, we are attempting to
replace as many “direct-action” dependent variables as
possible with comparable sets for which adequate dose/
response data has been obtained.

The independent variables in bank regression equa-
tions are generally the physicochemical parameters pre-
viously discussed. With the exception of molar
refractivity (MR), and the calculated steric parameters
(Charton’s v, and the Sterimol constants) they are on a
log basis. MR has been divided by ten, and the others
appropriately scaled to more nearly coincide with the
other parameters.*

The bioactivity database contains a number of equa-
tions which use indicator variables instead of a true
parameter. Like the “extrathermodynamic” method it-
self, this procedure has been criticized on theoretical
grounds. In our use of indicator variables, a parametric
method is combined with a nonparametric one, like the
Free-Wilson (28). But even if purists are somewhat of-
fended by this combination, one must face the reality
of working with some structural variations that are best
dealt with by the answer to the question: “present?” or
“not present?” and so they are arbitrarily given the
respective values of 1.0 or 0.0. The coefficient that ap-
pears in the resulting regression equation is a good mea-
sure of the relative importance of that feature in
determining activity. As an alternate method, one could

*Scaling is just a matter of convenience for most applications, but
if the parameters are used in cluster analysis, a more exact mathe-
matical procedure must be followed (29).

make separate sets for each of these structural varia-
tions, and the difference in intercepts would correspond
to the indicator coefficient in the combined equation.
The disadvantage to this second approach is that some
of these sets might contain too few data points to es-
tablish slopes and intercepts with much confidence and
the similarities might be overlooked. Of course, the real
challenge is to devise a continuous variable that can be
applied to that particular structural variation, making
it a true parameter.

To make proper use of regression equation informa-
tion, close attention must be given to the statistics ac-
companying it. The Pomona Medchem structure-activity
data bases keep this statistical information readily ac-
cessible, for many searches could be misleading if it
were not included. As a very simple example, one might
search for all systems which, in the hydrophobic binding
of reactants, appear to completely de-solvate them in a
manner comparable to the octanol/water model. They
should then show a coefficient with log P close to 1.0;
say, 0.9 to 1.1. But to meet this criterion, the coefficient
of each log P term can be expanded by the 95% confi-
dence interval associated with it.

Whenever a squared parameter value is used as an
independent variable and a parabolic relationship re-
sults, the optimal value of that parameter (usually hy-
drophobicity) is calculated together with its 95%
confidence limits. Frequently there are not very many
data points on the right side of the curve, and so the
limits on the optimal value may include infinity. Ob-
viously some searches should be made with these doubt-
ful values excluded.

More and more frequently one finds data good enough
to support a different slope for the upward and down-
ward legs of a bilinear relationship. This is often the
case with enzyme inhibition or cells in culture. An ex-
ample is seen in Eq. (30) from a study (30) of growth
inhibition of L5178 leukemia cells by triazenes having
the structure:

NH, X
N)\N Z=O or NH
k CH where: Y
HaN N/c+:; ’ X=CH z—@
3 2
a. b.
log 1/C = 1.32w - 1.70 log (B - 10™ + 1) + 0.44] + 8.10
(30)
with
n = 37
s = 0.274
r = 0.929
7° = 0.76
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Table 1. °S. typhimurium TA92(04B)*1-(X-phenyl-3,3-dialkyltrizines* Mutation, 30/10° cells, with S-9 liver fraction* J. Med. Chem.,
22, 473 (1979)*

No. X R WLN s logP ot Obsd Caled Dev
1. 4-CONH,* t-Bu ZVR DNUNN1&X 2.61 -0.30 3.83 6.26 2.43
2. 3,5-CN CH, NCR CCN ENUNNI1&1 2.18 1.12 3.46 3.50 0.04
3. 4-SO.NH, CH;3 ZSWR DNUNNI1&1 0.98 0.57 3.49 3.15 0.34
4. 3-CONH, CH, ZVR CNUNN1&1 1.21 0.28 3.51 3.86 0.35
5. 4-CONH. CH, ZVR DNUNN1&1 1.20 0.36 4.04 3.72 0.32
6. 4-CONH, allyl ZVR DNUNN1&2U1 2.09 0.36 4.16 4.65 0.49
7. 3-NHCONH, CH, ZVMR CNUNN1&1 1.29 -0.03 4.19 4.45 0.26
8. 4-CN CH; NCR DNUNN1&1 2.39 0.66 4.43 4.47 0.04
9. 4-COCHj, CHj 1VR DNUNN1&1 2.27 0.50 4.47 4.61 0.14

10. H CH; IN1&NUNR 2.59 0.00 5.32 5.75 0.43

11. 4-CONH, n-Bu ZVR DNUNN4&1 2.46 0.36 5.41 5.03 0.38

12. 4-NHCONH,; CH,3 ZVMR DNUNN1&1 1.25 -0.84° 5.59 5.72 0.13

13. 4-NHCOCH; CH; 1VMR DNUNN1&1 1.54 -0.60 5.83 5.64 0.19

14. 4-CF; CH; FXFFR DNUNN1&1 3.70 0.61 5.99 5.91 0.08

15. 3-CH,3 CH, IN1&NUNR C 2.85 -0.07 6.44 6.14 0.30

16. 4-Cl CH;3 GR DNUNNI1&1 3.33 0.11 6.48 6.34 0.14

17. 4-CHj3 CH; IN1&NUNR D 2.93 -0.31 7.00 6.61 0.39

18. 4-CgHy CH, IN1&NUNR DR 4.40 -0.18 7.67 7.93 0.26

*This data point not used in the derivation of Eq. (1).
Estimated value.

log VC = 1.09 (= 0.17) log P - 1.63 (+ 0.35)0* + 5.58 (+ 0.95); n = 17, r = 0.974, s = 0.315.

In this equation I indicates whether a bridge connects
the meta substituent X with another ring, and B is a
term that is responsible for the value at which = reaches
an optimum. The slope of the “downward leg” in this
relationship is given by the sum of the coefficients of
the first two terms—in this case, - 0.52. B is calculated
by an iterative procedure, and the “jacknife” procedure
(31) provides confidence levels on the two slopes and
log P,.

The methods for entering the structure of the test
compounds and their storage and retrieval have been
discussed above and apply to both biological and phys-
icochemical data bases. Search screens (32) have been
extracted from the WLNs, and, when applied at the set
level, can expedite searches made with small com-
puters. For most of the newer machines, computation
time is so cheap that the flexibility of searching by
SMILES or by connection table is easily justified.

As the biological data bank took shape, it quickly
became apparent that the nomenclature used by the
original investigators to describe biological systems was
not sufficiently standardized to enable the usual “text
searching” of the names as originally reported. Some
common examples of the problem can be mentioned:
“feline” is rarely used for cat, but “dog” and “canine”
are both common; “mouse,” “mice” and “murine,” are
all used referring to more than one test animal. We have
always tried to use the simplest form of the plural word,
but we also include a three-character class descriptor
(83) beginning with the lowest numbers for the simplest
systems. The six numbers currently in use are: 01, non-
enzymatic macromolecules; 02, enzymes; 03, organelles;
04, single cell organisms; 05, isolated parts of organs;
06, large functioning organisms.

The third character is optional. It is a letter standing
for a subdivision of that class, e.g., 04B refers to bac-

teria in vitro. The class descriptors can be combined.
04B, 06A refers to action against bacteria in a nonhuman
animal.

The simplest of the possible systems involved, if it is
clearly the target of the action, is given first billing.
For instance, in a test of antibiotics against Staphylo-
coccus aureus in mice, the system would be: S. aureus;
mice; 04B, 06A. Inhibition of alcohol dehyrogenase in
isolated liver cells would be entered as: dehydrogenase,
aleohol; cells, liver; 02A,04C. The strain or other clas-
sification information is entered after the organism name,
e.g., mice, nude; or monkey, rhesus.

Coping with the biological action descriptor is the
most difficult problem in attempting to optimize the
structure of this data bank. If they were entered just
as reported, there would be perhaps one-third as many
different actions as there are data sets. The problem
becomes more acute as the test organism becomes more
complex and very subtle behavior is being recorded as
the end point. Narcosis, anesthesia, and analgesia are
recorded as three separate actions, but distinction be-
tween them on the basis of the “tail flick” test seems to
a nonexpert, to be some what arbitrary.* There is even
some degree of ambiguity in simple bacterial tests. Some
while others are reported as “kill.” Obviously if the test
were run long enough, bacteria showing 100% growth
inhibition would be dead, unless they formed spores.
But these details are not always clearly reported in the
papers.

Our approach to this problem was to reduce the va-
riety of “biological actions” by combining two or several

*After a rat is given an appropriate dose of the test compound, an
intense spot of light is focused on its tail. If it feels pain, it flicks its
tail away. Presumably, an analgesic can dull this pain with no no-
ticeable loss in consciousness.
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under one heading when this seemed appropriate. Then
a thesarus was prepared of those remaining. Future
entries are made after consulting this thesarus, and a
reasonable effort is made to limit new designations.

Important test conditions are entered as secondary
descriptors of the action. Thus “growth inhibition” might
be followed by: “37 deg, 18 hr, Hartley broth + serum.”

Table 1 shows the computer print of an example data
set from the biological activity bank.

The “system,” “compound,” “action” and “reference”
subfiles constitute the “Title information” for this set
and are set apart by asterisks. They follow the format
described above and thus need little comment, except
to re-emphasize that, since the dependent variable is
given as log 1/C, C is the concentration of triazene needed
to reach a mutation level of 30 mutants per 10° cells and
that the presence of the S-9 liver microsome fraction is
considered a modifier of “activity” rather than a modifier
of the system. For each set, a fifth (optional) file is
available for any notes describing any unusual steps in
the computation—in this example, details of the steps
taken to estimate the sigma plus value for p-NHCONH,
would be entered in the fifth file, which is not computer-
searchable, however.

Search Strategy Examples

A question which might often be asked by those con-
cerned with environmental hazard assessment is the
following: In which systems is this particular chemical
substructure most toxic? For instance, N-monosubsti-
tuted-thiocarbamates?

The general search strategy could be set us as follows.

1. Dependent variable (i.e., activity) must be “log 1/C’
and > 3.0; AND ‘

2. Compound SMILES must contain uniqued version
of: *SC(=0)N* AND isolating carbons at asterisks can
be of any type; THEN

3. Print systems in order of decreasing log 1/C, with
associated activity.

The majority of biological actions are toxic to some
degree, but if a scan of the printout from the above
search is too inclusive, and the output too voluminous
to screen out by hand, then some attention must be
given to the descriptors of the unwanted activities in
order to add an appropriate restriction at step one.

As another example of a question which is easily
answered with the present databank structure, one could
ask: “How large is the range of ideal hydrophobicities
of phenolic bactericides?”

1. System subfile must contain ‘4B’; AND

2. Compound structure file in SMILES must contain
either: “-Oc¢”; OR “cO-" OR “c(0)” (where “c” is aromatic
carbon); AND

3. Equation subfile contains a term in log P, or w,;
THEN

4. Put log P, and m, in separate files; associate parent
SMILES with each m,; and print out in numerical order.
To merge the m, file with the log P,, one must enter the

parent SMILES into CLOGP-3 and add that value to
each w,. With prior knowledge of the bank contents, one
can be sure that the majority of actions reported with
bacterial systems are “kill,” but to eliminate the few oth-
ers, such as bacterial luminescence, one could add an
appropriate restriction to the “action” subfile.

Conclusions

The use of substituent parameters, in linear regres-
sion equations or equations containing power terms, to
rationalize either physicochemical or biochemical reac-
tions cannot be justified on purely theoretical principles.
While some of the parameters are from equilibrium data
and thus have a basis in thermodynamics, others are
from rate data and do not. Furthermore, in applying
these values to any reaction system other than the one
in which they were measured, one assumes either no
entropy change or else an entropy/enthalpy cancella-
tion. And yet, despite these seemingly valid objections,
the “extrathermodynamic” methodology has been very
successfully applied to physicochemical, biochemical and
physiological interactions. Careful interpretations of the
equations so far collected has given useful, if somewhat
limited, insight into likely mechanisms of action. But
more important, it has focused attention on certain sim-
ilarities of action common to simple model systems as
well as to complex whole animals and plants.

This methodology is not in competition with newer
molecular graphics techniques which fit known sub-
strates and prospective inhibitor structures to well-
characterized active sites of enzymes. On the contrary,
it has been shown to be a valuable adjunct to them (34),
especially in the field of drug design. In the areas of
predictive toxicology and environmental hazard assess-
ment, however, such detailed knowledge of key enzyme
structure is a seldom-enjoyed luxury, and regression
analysis with readily available substituent parameters
offers an “off-the-shelf” tool of proven utility.

This work has been supported by the National Institutes of Health
under grant GM-30362
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